Banach-module valued derivations on $C^{\ast}$-algebras
نویسندگان
چکیده
منابع مشابه
MODULE GENERALIZED DERIVATIONS ON TRIANGULAUR BANACH ALGEBRAS
Let $A_1$, $A_2$ be unital Banach algebras and $X$ be an $A_1$-$A_2$- module. Applying the concept of module maps, (inner) modulegeneralized derivations and generalized first cohomology groups, wepresent several results concerning the relations between modulegeneralized derivations from $A_i$ into the dual space $A^*_i$ (for$i=1,2$) and such derivations from the triangular Banach algebraof t...
متن کاملmodule generalized derivations on triangulaur banach algebras
let $a_1$, $a_2$ be unital banach algebras and $x$ be an $a_1$-$a_2$- module. applying the concept of module maps, (inner) modulegeneralized derivations and generalized first cohomology groups, wepresent several results concerning the relations between modulegeneralized derivations from $a_i$ into the dual space $a^*_i$ (for$i=1,2$) and such derivations from the triangular banach algebraof t...
متن کاملDerivations on Banach Algebras
The separating space of a derivation onA is a separating ideal [2, Chapter 5]; it also satisfies the same property for the left products. The following assertions are of the most famous conjectures about derivations on Banach algebras: (C1) every derivation on a Banach algebra has a nilpotent separating ideal; (C2) every derivation on a semiprime Banach algebra is continuous; (C3) every derivat...
متن کاملOn module extension Banach algebras
Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule. Then ${mathcal{S}}=A oplus X$, the $l^1$-direct sum of $A$ and $X$ becomes a module extension Banach algebra when equipped with the algebra product $(a,x).(a',x')=(aa',ax'+xa').$ In this paper, we investigate biflatness and biprojectivity for these Banach algebras. We also discuss on automatic continuity of derivations on ${mathcal{S...
متن کاملModule-Amenability on Module Extension Banach Algebras
Let $A$ be a Banach algebra and $E$ be a Banach $A$-bimodule then $S = A oplus E$, the $l^1$-direct sum of $A$ and $E$ becomes a module extension Banach algebra when equipped with the algebras product $(a,x).(a^prime,x^prime)= (aa^prime, a.x^prime+ x.a^prime)$. In this paper, we investigate $triangle$-amenability for these Banach algebras and we show that for discrete inverse semigroup $S$ with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1980
ISSN: 0019-2082
DOI: 10.1215/ijm/1256047615